Blog

Peak Farmland

There was an interesting article in the Wall Street Journal last week describing some research on land use and agricultural productivity ( the original research is posted here).  

Here are some snippets from the WSJ article:

Globally, the production of a given quantity of crop requires 65% less land than it did in 1961, thanks to fertilizers, tractors, pesticides, better varieties and other factors. Even corrected for different kinds of crops, the acreage required is falling at 2% a year.

and

Yet the amount of farmland in the world was still rising until recently. The reason is that increased farm productivity has been matched by rising demand for food, driven by population growth and swelling affluence. But the effects of these trends are waning.

and

Even with these cautious assumptions, the researchers find that over the next 50 years people are likely to release from farming a land area "1½ times the size of Egypt, 2½ times the size of France, or 10 Iowas, and possibly multiples of this amount."

in conclusion:

Predictions of peak oil have repeatedly proved wrong. But the factors that made them wrong—productivity and technology—are essentially the ones that make a prediction of peak farmland likely to be right.

I agree - so long as we don't demonize or overly regulate the use of technologies that lead to increased productivity in food.  I have faith in our innovative abilities, but I worry about the messages being sent by the foodie cultural elites.   

What are the Environmental Costs of Moving Toward Lower Yielding Cropping Systems?

Here are the conclusions from an article just published online in the American Journal of Agricultural Economics

Crop yield development will play a critical role in future land use dynamics. Indeed, it will determine the requirements for additional cropland, and also have a strong impact on grassland expansion. We have illustrated that compared with yield stagnation, maintaining past trends in crop yield growth would save 290 Mha of cropland and avoid additional expansion of about 120 Mha of grassland by 2030. Our results suggest that failing to take into account the effects of livestock sector dynamics and the corresponding grassland requirements when assessing the effect on land sparing of increasing crop yield may lead to significant inaccuracy–a difference of 17% in our example.
With respect to GHG emissions, we show that by 2030 these would be lower by more than 2 GtCO2-eq per year if crop yields grew according to the past trends as compared to yield stagnation. Crop yield growth also seems to be a cost efficient way of abating GHGs, as the estimated R&D cost involved would be about U.S. $25 per tCO2-eq, while the marginal cost of reaching this target with stagnating yields would be U.S. $75 per tCO2-eq. However, to be effective as a mitigation option, crop yield increases need to be accompanied by policies that prevent further expansion of consumption in rich countries in order to avoid the potential rebound effects illustrated by Choi et al. (2011).
Overall, policies and investments targeting crop yield enhancement should be an important priority for the future of agricultural development (Herrero et al. 2010). Such measures could help to fight food insecurity, while at the same time contributing to climate change mitigation at a cost that is competitive with other mitigation strategies.