Blog

Effects of Citrus Greening

Writing in Choices magazine, several agricultural economists discuss the impact of a virus that has adversely affected Florida citrus growers and the nation's citrus consumers.

Huanglongbing (HLB), also known as citrus greening, has emerged as an increasing threat to the economic viability of citrus production in Florida. Citrus greening was first observed in non-commercial, backyard citrus in South Florida in August 2005. By February 2009, citrus greening had spread throughout the traditional citrus areas of the state. Thus far, quarantine, tree removal, insecticide applications, heat treatments, and foliar nutritional techniques designed to mask the disease symptoms are the only available, but not completely effective, techniques for managing citrus greening. The disease directly affects the citrus tree resulting in reduced yield and fruit quality following an initial incubation period, eventually making the tree unproductive and contributing to greater mortality.

The impacts?

consumers would be expected to lose $154.9 million due to higher prices and less consumption. Despite higher prices, producers would be expected to lose $18.09 million because the decrease in sales would outweigh the increase in price received. Hence, the total economic cost of greening is estimated to be $173.0 million. However, these estimates may understate the economic cost of citrus greening

What's being done?

To solve these problems, researchers are putting tremendous time and effort into finding solutions to HLB. The U.S. Department of Agriculture has allocated $24 million for fiscal year 2014 specifically for citrus disease research. The money is allocated to researchers through a competitive grant process under the Specialty Crop Research Initiative/Citrus Disease Research and Extension program. Proposed projects from researchers at many institutions include developing and testing compounds to cure the disease itself, developing and testing improved insecticide programs to increase efficacy and reduce resistance development, and developing and testing alternative psyllid controls such as the use of biological options. Other possible solutions include genetically modifying citrus trees to be resistant to the disease or genetically modifying psyllids to be incapable of vectoring the disease. Thus, substantial time and effort have been allocated to finding solutions to the problem, but most possible solutions will take time to develop and test before growers will be able to benefit from them.